

Mathematics (9709)

Paper 3: Pure Mathematics (P3)

2020-2021

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

February/March 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

(a)	Sketch the graph of $y = x - 2 $.	[1]
	(a)	(a) Sketch the graph of $y = x - 2 $.

Solve the inequality $ x-2 < 3x - 4$.	[3]
	•••••

© UCLES 2020 9709/32/F/M/20

(b)

•••••			•••••		•••••	•••••		•••••
•••••	•••••	•••••	•••••		•••••	•••••		•••••
		•••••	••••••		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
			•				•	
		•••••			•••••			
•••••		•••••	•••••		•••••	•••••	•••••	•••••
•••••	•	•••••	••••••		•••••	•••••	••••••	•••••
••••••		••••••	••••••	•••••••	••••••	•••••	••••••	••••••
		•••••			•••••			
•••••	•••••	•••••	•••••	,	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••		•••••	•••••		•••••	•••••		•••••

3	(a)	By sketching a suitable pair of graphs, show that the equation $\sec x = 2 - \frac{1}{2}x$ has exactly one in the interval $0 \le x < \frac{1}{2}\pi$.	root [2]
			•••••
	(b)	Verify by calculation that this root lies between 0.8 and 1.	[2]
			• • • • • • • • • • • • • • • • • • • •
	(c)	Use the iterative formula $x_{n+1} = \cos^{-1}\left(\frac{2}{4-x_n}\right)$ to determine the root correct to 2 decimal plane	aces.
		Give the result of each iteration to 4 decimal places.	[3]
			.
			· • • • • • • •

Find $\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} x \sec^2 x dx$. Give your answer in a simplified exact form.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

Show tha	sin x	$\cos x$							[4]
						•••••			
•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
	•••••		•••••					•••••	
••••••	••••••	•••••••	••••••	•		•••••	••••••	••••••	••••••
••••••	•••••	••••••	•••••	••••••				•••••	
••••••	••••••	•••••	•••••	•••••		•••••		•••••	•••••
••••••	••••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••••••
		•••••		•••••					
									•••••
•••••	•••••	•••••	•••••	•••••		•••••		••••••	
	•••••		•••••	•••••		•••••			
••••••	••••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
••••••	•••••	••••••	•••••	••••••				•••••	
,	,								
•••••	•••••	•••••	•••••	•••••		•••••		•••••	•••••

5

	lve the equati	SIII X	cosx				
•••••							
•••••	•••••		•••••			•••••	
•••••							
							,
•••••	••••••			•••••	•••••	••••••	
•••••	•••••		••••••	••••••	•••••	•••••	
•••••				•••••	•••••	•••••	
•••••						•••••	
						•••••	
•••••							
	••••••						
•••••	•••••		••••••	••••••	•••••	•••••	
•••••	•••••			•••••	•••••		

6	The variables x and	y satisfy the	differential	equation
---	---------------------	---------------	--------------	----------

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 + 4y^2}{\mathrm{e}^x}$$

It is given that y = 0 when x = 1.

Solve	e the d	ifferer	ntial e	equation	on, ol	btain	ing a	n exp	oress	ion fo	or y i	n ter	ms o	f <i>x</i> .				[7]
•••••		•	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • •	•••••	•••••	•••••	•••••
• • • • • •	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••		•••••	•••••
		•••••	•••••	•••••	•••••	•••••				•••••		•••••		•••••	•••••		•••••	•••••
•••••		•••••	•••••	•••••	•••••					•••••		•••••		•••••	•••••			
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	•••••			•••••		•••••		•••••		•••••			•••••	
•••••		•••••	•••••		•••••					•••••		•••••		•••••			•••••	
			•••••	•••••	•••••					•••••		•••••		•••••			•••••	
					•••••							•••••		•••••				
•••••					•••••							•••••		•••••				
					•••••							•••••		•••••				
					•••••									•••••				
														•••••				•••••
					••••									•••••				
•••••		•	•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••
•••••	•	•••••	•••••	•••••	•••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••			•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••

a)	Show that $\frac{dy}{dx} = \frac{x^2 + y^2}{y^2 - 2xy}$.	

•••••
•••••
•••••
•••••
••••
•••••
••••
••••
•••••
 ••••
•••••
••••
•••••
••••
 •••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••

In the diagram, OABCDEFG is a cuboid in which OA = 2 units, OC = 3 units and OD = 2 units. Unit vectors **i**, **j** and **k** are parallel to OA, OC and OD respectively. The point M on AB is such that MB = 2AM. The midpoint of FG is N.

(a)	Express the vectors \overrightarrow{OM} and \overrightarrow{MN} in terms of i , j and k .	[3]
		••••••
(b)	Find a vector equation for the line through M and N .	[2]

••••			••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	••••••	•••••	•••••
••••	••••••		••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••	••••••
• • • •				•••••	•••••	•••••					•••••
••••			•••••	•••••	•••••		•••••	•••••	••••••	•••••	•••••
••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
••••				•••••							
••••					•		••••••	••••••			•••••
••••											•••••
••••		• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	••••••	••••••	•••••
••••											
••••	••••••		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••	••••••	••••••
••••				•••••		•••••		•••••		•••••	•••••
••••		• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	••••••	••••••	•••••
••••											
••••											•••••

9	Let $f(x) =$	2 + 11x	$x - 10x^2$
7	Let $f(x) =$	$\overline{(1+2x)(1+2x)}$	$\overline{(2+x)(2+x)}$
	() T	c/):	. 10 .

•	,
•	
•	,
•	
•	 •
•	
	· · · · · · · · · · · · · · · · · · ·
•	
•	

Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and in	[5]

10	(a)	The complex numbers v and w satisfy the equations
		v + iw = 5 and $(1 + 2i)v - w = 3i$.
		Solve the equations for v and w , giving your answers in the form $x + iy$, where x and y are real. [6]

(b)

(i) On an Argand diagram, sketch the locus of points representing complex numbers z satisfying

	z-2-3i =1.	
(ii)	Calculate the least value of $\arg z$ for points on this locus.	
		•••••
		•••••
		••••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.	;)
	••
	••
	••
	••
	••
	••
	••
	••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

•••••			•••••	•••••		•••••	•••••	••••••	•••••		•••••
•••••							•••••				•••••
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••••	•••••
						• • • • • • • • • • • • • • • • • • • •	•••••		•••••		•••••
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••	••••••	•••••
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••••	•••••
						• • • • • • • • • • • • • • • • • • • •	•••••		•••••		
•••••	••••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
	•••••					• • • • • • • • • • • • • • • • • • • •	•••••				
•••••	••••••		•••••			••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••
•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	••••••			•••••
•••••					••••••						

State the set of values of x for which the ex	pansion is valid.

the equation for $0^{\circ} \le \theta \le 180^{\circ}$.	[0

1)	Find the <i>x</i> -coordinate of this point, giving your answer correct to 2 decimal places.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
ı	Determine whether the stationary point is a maximum or a minimum.	[2]

•	
•	
•	
•	
•	
•	
•	
•	
•	

(b)	Using your answer to part (a), find the exact value of	of $\int_{1}^{3} \frac{2x^3 - x^2 + 6x + 3}{x^2 + 3} dx.$ [5]

6

(a)

The diagram shows a circle with centre O and radius r. The tangents to the circle at the points A and B meet at T, and angle AOB is 2x radians. The shaded region is bounded by the tangents AT and BT, and by the minor arc AB. The area of the shaded region is equal to the area of the circle.

Show that x satisfies the equation $\tan x = \pi + x$.	[3]

(b)	This equation has one root in the interval $0 < x < \frac{1}{2}\pi$. Verify by calculation that this root lies between 1 and 1.4.
(c)	Use the iterative formula
	$x_{n+1} = \tan^{-1}(\pi + x_n)$
	to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

7	Let $f(x) =$	$\cos x$
,	Let $I(x) =$	$1 + \sin x$.

•••	
•••	
• •	•••••
•••	
•••	
•••	•••••
•••	
•••	
•••	
•••	••••••
•••	
•••	
•••	
•••	••••••••••
••••	
•••	
•••	

J $\frac{1}{6}$, π	c. Give you						
					•••••	 •••••	 	•••••
			•••••	•••••		 	 	
						 	 	•••••
•••••			•••••			 •••••	 •••••	
				•••••		 	 	•••••
						 	 	•••••
				•••••	•••••	 •••••	 •••••	•••••
				•••••	•••••	 •••••	 •••••	•••••
				•••••	•••••	 •••••	 •••••	•••••
						 	 	•••••
						 	 	•••••
						 •••••	 	•••••
				•••••	•••••	 •••••	 •••••	•••••
						 	 	•••••
						 	 	•••••
						 	 	•••••
				•••••	•••••	 	 •••••	•••••
				•••••		 	 	•••••
						 	 	•••••
						 	 	•••••
						 	 	•••••
						 	 	•••••

8

a)	By setting up and solving a differential equation, find the equation of the curve, expressing y in terms of x . [8]							

Describe what happens to y as x tends to infinity.	[1]

(b)

9	With respect to the origin	O, the verti	ces of a triangle ABC	have position vectors
---	----------------------------	--------------	-----------------------	-----------------------

$$\overrightarrow{OA} = 2\mathbf{i} + 5\mathbf{k}$$
, $\overrightarrow{OB} = 3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OC} = \mathbf{i} + \mathbf{j} + \mathbf{k}$.

(a)	Using a scalar product, show that angle ABC is a right angle.	[3]
(b)	Show that triangle <i>ABC</i> is isosceles.	[2]
		•••••

••••••••
••••••
 •••••••
 ••••••
 ••••••

10	(a)	The	complex number u is defined by $u = \frac{3i}{a+2i}$, where a is real.	
			Express u in the Cartesian form $x + iy$, where x and y are in terms of a .	[3]
		(ii)	Find the exact value of a for which arg $u^* = \frac{1}{3}\pi$.	[3]
		(ii)	Find the exact value of a for which arg $u^* = \frac{1}{3}\pi$.	[3]
		(ii)	Find the exact value of a for which $\arg u^* = \frac{1}{3}\pi$.	
		(ii)		

(i) On a sketch of an Argand diagram, shade the region whose points represent complex

(b)

i)	Calculate the least value of arg z for points in this region.	
i)	Calculate the least value of arg z for points in this region.	
i)		
i)		•••••
i)		•••••
)		•••••
i)		
i)		
)		

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.	;)
	••
	••
	••
	••
	••
	••
	••
	••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

•	•••••
•	•••••
•	
•	•••••
•	 •••••
•	
•	
•	•••••
•	 •••••
•	
•	
•	
•	•••••
•	 •••••
•	
•	
•	 •••••
•	 •••••
•	
•	

The variables x and y satisfy the equation $y^2 = Ae^{kx}$, where A and k are constants. The graph of $\ln y$ against x is a straight line passing through the points (1.5, 1.2) and (5.24, 2.7) as shown in the diagram.

Find the values of A and k correct to 2 decimal places.	[5]
	••••••
	••••••
	••••••
	•••••
	••••••
	••••••

	4	
3	Find the exact value of $\int_{1}^{4} x^{\frac{3}{2}} \ln x dx.$	[5]
		· • • • • • • • • • • • • • • • • • • •
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

3 S1g1	nificant fi	igures.									
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	••••••
		•••••		•••••		•••••		•••••			•••••
•••••				•••••		•••••					
				•••••		•••••				•••••	•••••
		•••••						• • • • • • • • • • • • • • • • • • • •			
						•••••					
		•••••						•••••			
						•••••					
						•••••					
						••••					
•••••		•	•		•	•••••	•	•	•	•••••	••••••
•••••	••••••	••••••	•••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	••••••••	••••••	••••••
••••••	•••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	••••••	••••••	••••••
•••••	••••••	•••••	•••••	•••••		•••••	•••••	•••••		••••••	•••••
•••••	•••••	•••••	••••••	•••••	•••••••	•••••	••••••	•••••	••••••	••••••	••••••
•••••	•••••	•••••		••••	• • • • • • • • • • • • • • • • • • • •	•••••				•••••	•••••
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••		•••••		••••••	••••••
•••••		•••••		•••••	•••••	••••••		•••••	••••••	•••••	••••••
•••••		•••••	••••••	•••••		•••••		•••••		••••••	••••••
		•••••		•••••		•••••		•••••			

•	
•	
•	
•	
•	
•	

•••••				•••••	•••••		••••••	•••••	
•••••							•••••	•••••	
			•••••		•••••		•••••	•••••	
•••••			•••••				•••••	•••••	
								•••••	
••••••	••••••	••••••	••••••	••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
								•••••	
•••••	•••••		•••••	••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
								• • • • • • • • • • • • • • • • • • • •	
•••••	•••••		•••••	••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
								•••••	
•••••	••••••		••••••	•••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
								•••••	
•••••	•••••		••••••	••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••								•••••	
•••••	••••••		••••••	••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••								•••••	
•••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••
								• • • • • • • • • • • • • • • • • • • •	

The diagram shows the curve $y = \frac{x}{1 + 3x^4}$, for $x \ge 0$, and its maximum point M.

•	

Using the substitution $u = \sqrt{3}x^2$, find by integration by the curve, the x-axis and the line $x = 1$.	[5

7	The variables x and	v satisfy th	e differential	equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y-1}{(x+1)(x+3)}.$$

It is given that y = 2 when x = 0. Solve the differential equation, obtaining an expression for y in terms of x. [9]

a	are real.	
•		••
•		••
• •		• •
		•
•		•
•		•
•		•
• •		•
• •		•
•		•
		•
•		•
•		•
		_
•		
• •		•
 •		•
•		•

(b)

(i) On a sketch of an Argand diagram, shade the region whose points represent complex

	numbers z satisfying the inequalities $ z-2-2i \le 1$ and $\arg(z-4i) \ge -\frac{1}{4}\pi$.	[4
;;)	Find the least value of Im z for points in this region, giving your answer in an exact form	m
ii)	Find the least value of $\operatorname{Im} z$ for points in this region, giving your answer in an exact form	
i)	Find the least value of $\operatorname{Im} z$ for points in this region, giving your answer in an exact form	
i)	Find the least value of $\operatorname{Im} z$ for points in this region, giving your answer in an exact form	
ii)	Find the least value of Im z for points in this region, giving your answer in an exact for	
i)	Find the least value of Im z for points in this region, giving your answer in an exact for	
ii)		
i)		
ii)		
i)		
i)		
ii)		
i)		
i)		[2
ii)		

The diagram shows the curves $y = \cos x$ and $y = \frac{k}{1+x}$, where k is a constant, for $0 \le x \le \frac{1}{2}\pi$. The curves touch at the point where x = p.

(a)	Show that p satisfies the equation $\tan p =$	$=\frac{1}{1+p}.$ [5]

Use the iterative formula $p_{n+1} = \tan^{-1} \left(\frac{1}{1 + p_n} \right)$ to determine the value places. Give the result of each iteration to 5 decimal places.	
	•••••
Hence find the value of k correct to 2 decimal places.	
	••••••

10 With respect to the origin O, the points A and B have position vectors given by $\overrightarrow{OA} = 6\mathbf{i} + 2\mathbf{j}$ and

ŀ	Find a vector equation for the line through M and N .	
•		
•		
		•••••
•		
•		
•		
•		
•		
		••••••
•		
•		

The line through M and N intersects the line through O and B at the point P.

•••••	••••••	••••••	•••••••••••	••••••	•••••••••••••••••••••••••••••••••••••••	 •••
		•••••				 •••
						 •••
•••••	•••••	•••••	••••••	•••••	••••••	 •••
						 •••
•••••••	••••••	••••••••••••	•	••••••	•	 •••
Calculate a	ungle <i>OPM</i> ,	giving your	answer in deg			•••
Calculate a	ungle <i>OPM</i> ,	giving your	answer in deş			 •••
Calculate a	angle <i>OPM</i> ,	giving your	answer in deg	grees.		•••
Calculate a	angle <i>OPM</i> ,	giving your	answer in deg	grees.		 •••
Calculate a	ingle <i>OPM</i> ,	giving your	answer in deg	grees.		 •••
Calculate a	ingle <i>OPM</i> ,	giving your	answer in deg	grees.		 •••
				grees.		
				grees.		
				grees.		
				grees.		
				grees.		
				grees.		
				grees.		

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

Solve the inequality $ 2x - 1 > 3 x + 2 $.	[4

Find the exact value of $\int_0^1 (2-x)e^{-2x} dx$.	
	••••••

3 ((a)	Show	that	the	equation

(b)

	$\ln(1 + e^{-x}) + 2x = 0$	
can be expressed as a quadratic	equation in e^x .	[2]
		•••••
		•••••
		•••••
		•••••
Hence solve the equation ln(1 +	e^{-x}) + 2x = 0, giving your answer correct to 3 decimal place	ces. [4]
Hence solve the equation ln(1 +	e^{-x}) + 2x = 0, giving your answer correct to 3 decimal place.	
	e^{-x}) + 2x = 0, giving your answer correct to 3 decimal place.	[4]
		[4]
		[4]
		[4]
		[4]
		[4]
		[4]

1)	Find $\frac{dy}{dx}$.	[3
`		
))	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point with $(0, p)$.	coordinate
))	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point with c	
)	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point with $(0, p)$.	coordinate
))	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point with $(0, p)$.	coordinate
))	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point with $x = 2$ meets the y-axis at the point with $x = 2$. Find $y = 2$.	coordinate
))	The tangent to the curve at the point where $x = 2$ meets the <i>y</i> -axis at the point with $x = (0, p)$. Find $x = p$.	coordinate
))	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point with $x = (0, p)$. Find $x = 2$ meets the y-axis at the point with $x = 2$ meets the y-axis at the y-axis at the point with $x = 2$ meets the y-axis at th	coordinate
	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point with $x = 2$ meets the y-axis at the y-axis at the point with $x = 2$ meets the y-axis at the y-ax	coordinate
•)	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point with $x = 2$ meets the y-axis at the y-axis at the point with $x = 2$ meets the y-axis at the y-ax	coordinate [3
•)	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point with $x = 2$ meets the y-axis at the y-axis at the point with $x = 2$ meets the y-axis at the y-axi	coordinate [3

5	By first	expressing	the ec	uation

$\tan\theta\tan(\theta+45^\circ)=2\cot2\theta$						
as a quadratic equation in $\tan \theta$, solve the equation for $0^{\circ} < \theta < 90^{\circ}$.	[6]					
	•••••					

6	(a)	By sketching a suitable pair of graphs, show that the equation $x^5 = 2 + x$ has exactly one root.	real
			· • • • • • • • • • • • • • • • • • • •
	(b)	Show that if a sequence of values given by the iterative formula	
		$x_{n+1} = \frac{4x_n^5 + 2}{5x_n^4 - 1}$	
		converges, then it converges to the root of the equation in part (a).	[2]
			•••••
			•••••
			•••••

(c)	Use the iterative formula with initial value $x_1 = 1.5$ to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

Let	$f(x) = \frac{2}{(2x-1)(2x+1)}.$	
(a)	Express $f(x)$ in partial fractions.	1
		•••••
		•••••
		•••••
		•••••
(b)	Using your answer to part (a), show that $ (f(x))^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}. $	
(b)		
(b)		
(b)		
(b)		

		$\int_{1}^{2} (f(x))^{2}$							
•••••									
•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	
•••••									
••••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	•	••••••
••••••	•••••	••••••	••••••	•••••	•••••	••••••		•••••	
••••••	•••••			•••••					
••••••		•••••	•••••		•••••	••••••		•••••	
•••••	•••••	••••••	•••••	•••••	••••••	••••••	••••••	•••••	
	•••••								
•••••									
	•••••							•••••	
	•••••								
	•••••		••••		••••	•••••		••••	
••••••	•••••	••••••	••••••		•••••	•••••	•••••	•	

8	Relative to the origin O , the points A , B and D have position vectors given					
	$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + \mathbf{k},$	$\overrightarrow{OB} = 2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$	and	$\overrightarrow{OD} = 3\mathbf{i} + 2\mathbf{k}.$		
	A fourth point C is such that ABCI	O is a parallelogram.				

Find the position vector of C and verify that the parallelogram is not a rhombus.	[5]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

							• • • • • • • • • • • • • • • • • • • •
		•••••	•••••				
					•••••	•••••	••••••
Find the area	of the paral	lelogram cor	rrect to 3 sig	nificant figu	res.		
Find the area	of the paral	lelogram coi	rrect to 3 sig	nificant figu	res.		
Find the area	of the paral	lelogram co	rrect to 3 sig	nificant figu	res.		
Find the area							

9 (a) The complex numbers u and w are such t	9	re such that
---	---	--------------

uw = 6.

Find u and w , giving your answers in the form $x + iy$, where x and y are real and exact. [5]

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities

$$|z-2-2i| \le 2$$
, $0 \le \arg z \le \frac{1}{4}\pi$ and $\operatorname{Re} z \le 3$. [5]

A tank containing water is in the form of a hemisphere. The axis is vertical, the lowest point is A and the radius is r, as shown in the diagram. The depth of water at time t is h. At time t = 0 the tank is full and the depth of the water is r. At this instant a tap at A is opened and water begins to flow out at a rate proportional to \sqrt{h} . The tank becomes empty at time t = 14.

The volume of water in the tank is V when the depth is h. It is given that $V = \frac{1}{3}\pi(3rh^2 - h^3)$.

(a) Show that h and t satisfy a differential equation of the form

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{B}{2rh^{\frac{1}{2}} - h^{\frac{3}{2}}},$$

where B is a positive constant.	[4]

•	
•	
•	
•	
•	
•	
•	
•	
•	
_	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

•	
•	
•	••••••••
• •	
• •	
•	,
• •	
•	
•	
•	
• •	
•	
•	,
• •	

On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z| \ge 2$ and $|z - 1 + i| \le 1$. [4]

[5]

	3	The parametric	equations	of a	curve	aı
--	---	----------------	-----------	------	-------	----

$$x = 3 - \cos 2\theta, \quad y = 2\theta + \sin 2\theta,$$
 for $0 < \theta < \frac{1}{2}\pi$. Show that $\frac{dy}{dx} = \cot \theta$.

4	Solve	the	equatic	n

$\log_{10}(2x+1) = 2\log_{10}(x+1) - 1.$	
Give your answers correct to 3 decimal places.	[6]
	· • • • • • • • • • • • • • • • • • • •
	· ····
	· • • • • • • • • • • • • • • • • • • •
	· • • • • • • • • • • • • • • • • • • •
	,
	,

5	(a)	By sketching a suitable pair of graphs, show that the equation $\csc x = 1 + e^{-\frac{1}{2}x}$ has exactly two roots in the interval $0 < x < \pi$.
	(b)	The sequence of values given by the iterative formula
		$x_{n+1} = \pi - \sin^{-1}\left(\frac{1}{e^{-\frac{1}{2}x_n} + 1}\right),$
		with initial value $x_1 = 2$, converges to one of these roots.
		Use the formula to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

	value of R and give α correct to 2 decimal places.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

Hence solve the equation $\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x = 2.5$, for $0^{\circ} < x < 360^{\circ}$.	
	••••••
	•••••
	••••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••

•••••••

)	Find the other roots of this equation.	[4]
		• • • • • • • • • • • • • • • • • • • •
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		•••••
		• • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • •
		•
		•
		•••••

8	The coordinates (x, y) of a general point of a curve satisfy the differential equation
	$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$$

for x > 0. It is given that y = 1 when x = 1.

Solve the differential equation, obtaining an expression for y in terms of x .	[6]
	,
	,

© UCLES 2020

9	Let $f(x) = \frac{8 + 5x + 12x^2}{}$
7	Let $f(x) = \frac{8 + 5x + 12x^2}{(1 - x)(2 + 3x)^2}$.

(a)	Express $f(x)$ in partial fractions.	[5]		

Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and in	[5]

10

The diagram shows the curve $y = (2 - x)e^{-\frac{1}{2}x}$, and its minimum point M.

(a)	Find the exact coordinates of M .	[5]

of e.							
		 					•••••
		 		•••••	•••••		
•••••	•••••	 					
		 •••••	••••••	•••••	•••••		•••••
	•••••	 •••••	••••••				
		 •••••					•••••
		 					•••••
		 			•••••		•••••
•••••	••••••	 •••••	••••••	••••••	•••••		• • • • • • •
•••••	•••••	 •••••	••••••				• • • • • •
		 •••••					
	•••••	 •••••		•••••	•••••	•••••	
	•••••	 					
•••••	•••••	 •••••	•••••	•••••	•••••		
		 					•••••

11 Two lines have equations $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(a\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ and $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} + \mathbf{k})$, where a is a

Given that the two lines intersect, find the value of a and the position vector of the pointersection.

	nstead that sible values		angie se	tween ti			tile two		C 05	(6), 11	[6
•••••	•••••	•••••		•••••		•••••			•••••	•••••	••••••
•••••						•••••					
						•••••			• • • • • • • • • • • • • • • • • • • •	•••••	
						•••••				•••••	
•••••						•••••			•••••		
						•••••			•••••		
				•••••		•••••			• • • • • • • • • • • • • • • • • • • •		
						•••••			•••••		
						• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		
						•••••			•••••		
•		••••••	••••••	••••••	•••••	••••••		•••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
•••••		••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•	•••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••		•••••	•••••	•••••	•••••	••••••			•••••	••••••	•••••
	•••••	••••••	•••••	•••••	••••••	•••••			• • • • • • • • • • • • • • • • • • • •		•••••
•••••		••••••	•••••	•••••	•••••	•••••			•••••		•••••
•••••		••••••	•••••	•••••	•••••	•••••			• • • • • • • • • • • • • • • • • • • •		•••••
•••••	•••••		•••••	••••••	•••••	•••••	•	••••••	• • • • • • • • • •	•••••	
•••••		••••••		•••••	•••••				•••••		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS

Paper 3 Pure Mathematics 3

October/November 2020

1 hour 50 minutes

9709/32

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

1	Solve	the ec	uation

$ln(1 + e^{-})$	$^{3x}) = 2.$
-----------------	---------------

Give the answer correct to 3 decimal places.	[3]

u)	Expand $\sqrt[3]{1+6x}$ in ascending powers of x, up to and including the term in x^3 , simplifying coefficients.	5
		••
		••
		••
		•
		•
		••
		•
		•
		•
		• •
		••
		••
b)	State the set of values of x for which the expansion is valid.	
		• •

3

(a)	By taking logarithms, show that the graph of y against x is a straight line. State the exact value of the gradient of this line.	
		••
		••
b)		
(D)	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.	
()	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.	
	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.	
	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.	2]
	answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.	2]
	answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.	2]
	answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.	2]
	answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.	2]
	answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers.	2]

4	(a)	Show that the equation $tan(\theta + 60^\circ) = 2 \cot \theta$ can be written in the form		
		$\tan^2\theta + 3\sqrt{3}\tan\theta - 2 = 0.$	[3]	
			• • • • • • •	
			•••••	
			• • • • • •	
			• • • • • • •	
			•••••	
			• • • • • •	
			• • • • • •	
			•••••	
			•••••	
			•••••	
			•••••	
			•••••	
			•••••	
			•••••	

••••••
 •••••
••••••••••
 •••••
•••••
 •••••
••••••

5

The diagram shows the curve with parametric equations

$$x = \tan \theta$$
, $y = \cos^2 \theta$,

for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$.

(a)	Show that the gradient of the curve at the point with parameter θ is $-2\sin\theta\cos^3\theta$. [3]

The gradient of the curve has its maximum value at the point P.

(b)	Find the exact value of the <i>x</i> -coordinate of <i>P</i> .	[4]

6 The complex number <i>u</i> is defined by
--

ed by
$$u = \frac{7 + i}{1 - i}.$$

(a)	Express u in the form $x + iy$, where x and y are real.	[3]
		· • • • • • • • • • • • • • • • • • • •
(b)	Show on a sketch of an Argand diagram the points A , B and C representing u , $7 + i$ an respectively.	d 1 – i [2]

$\tan^{-1}\left(\frac{4}{3}\right) = \tan^{-1}\left(\frac{1}{7}\right) + \frac{1}{4}\pi.$	[3]
	••••
	••••
	••••
	••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

7 The variables x and t satisfy the differential equation

$$e^{3t} \frac{\mathrm{d}x}{\mathrm{d}t} = \cos^2 2x,$$

for $t \ge 0$. It is given that x = 0 when t = 0.

a)	Solve the differential equation and obtain an expression for x in terms of t . [7]

State what happens to the value of x when t tends to infinity. [1]

(b)

8	With respect to the origin O ,	the position vectors of the	points A , B , C and D are give	en by
-		F	F)

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}.$$

(a)	Show that $AB = 2CD$.	[3]
		•••••
(b)	Find the angle between the directions of \overrightarrow{AB} and \overrightarrow{CD} .	[3]

Show that the line through A and B does not intersect the line through C and D .	[
	••••••
	••••••
	••••••
	•••••

9	Let $f(x) =$	7x + 18
,	Let $I(x) =$	$(3x+2)(x^2+4)$

(a)	Express $f(x)$ in partial fractions.	[5]

•	 	
•	 	
•	 	
•	 	
•	 	
•	 	
•		
•	 	
•	 	
•	 	
•	 	
•	 	

10

The diagram shows the curve $y = \sqrt{x} \cos x$, for $0 \le x \le \frac{3}{2}\pi$, and its minimum point M, where x = a. The shaded region between the curve and the x-axis is denoted by R.

(a) Show that a satisfies the equation $\tan a = \frac{1}{2a}$. [3]

(b) The sequence of values given by the iterative formula $a_{n+1} = \pi + \tan^{-1}\left(\frac{1}{2a_n}\right)$, with initial value

 $x_1 = 3$, converges to a.

Use this formula to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

© UCLES 2020 9709/32/O/N/20

•••••
••••••
•••••
••••••
••••••

Additional Page

f you use the following lined page to complete the answer(s) to any question(s), the question number nust be clearly shown.	r(s)
	••••
	•••••
	••••
	••••
	••••
	••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

BLANK PAGE

© UCLES 2020 9709/33/O/N/20

•••••
•••••
•••••
•••••
 •••••
 •

On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z| \ge 2$ and $|z - 1 + i| \le 1$. [4]

© UCLES 2020 9709/33/O/N/20

[5]

	3	The parametric	equations	of a	curve	aı
--	---	----------------	-----------	------	-------	----

$$x = 3 - \cos 2\theta, \quad y = 2\theta + \sin 2\theta,$$
 for $0 < \theta < \frac{1}{2}\pi$.
Show that $\frac{dy}{dx} = \cot \theta$.

· • • • • •
· • • • •
· • • • • •
· • • • • •
· • • • • •
· • • • • •
· • • • •
· • • • •
· • • • •
· • • • •
· • • • •
· • • • •
· • • • • •
· • • • • •
· • • • • •
· • • • • •
· • • • • •
· • • • • •
· • • • • •

4	Solve	the	ea	uation

$\log_{10}(2x+1) = 2\log_{10}(x+1) - 1.$	
Give your answers correct to 3 decimal places.	[6]
	•••••••
	••••••••••
	••••••
	••••••
	••••••
	••••••
	••••••
	••••••
	••••••

5	(a)	By sketching a suitable pair of graphs, show that the equation $\csc x = 1 + e^{-\frac{1}{2}x}$ has exactly two roots in the interval $0 < x < \pi$. [2]
	(b)	The sequence of values given by the iterative formula
		$x_{n+1} = \pi - \sin^{-1}\left(\frac{1}{e^{-\frac{1}{2}x_n} + 1}\right),$
		- · · · · · · · · · · · · · · · · · · ·
		with initial value $x_1 = 2$, converges to one of these roots.
		Use the formula to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

	value of R and give α correct to 2 decimal places.	
• •		
•		• • • • • • • • • • • • • • • • • • • •
•		
• •		• • • • • • • • • •
• •		
••		• • • • • • • • • • • • • • • • • • • •
• •		
• •		• • • • • • • • •
• •		
• •		• • • • • • • • • • • • • • • • • • • •
••		•••••
• •		• • • • • • • • • • • • • • • • • • • •
		•••••
•		
• 1		
••		• • • • • • • • • • • • • • • • • • • •
•		
• •		•••••

,
,
 ,

•••••••

Find the other roots of this equation.	[
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••••
	••••••
	•••••
	••••••
	••••••
	••••••
	•••••
	••••••

8 Th	e coordinates	(x, y)	of a general	point of a curve	satisfy the	differential ed	quation
------	---------------	--------	--------------	------------------	-------------	-----------------	---------

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$$

for x > 0. It is given that y = 1 when x = 1.

Solve the differential equation, obtaining an expression for y in terms of x .	[6]
	••••••
	••••••

 •••
•••
 • • •
• • • •
 . .
•••
• • •
•••
 •••
• • • •
•••
•••
• • •
•••
•••
 •••

9	Let $f(x) = \frac{8 + 5x + 12x^2}{}$
7	Let $f(x) = \frac{8 + 5x + 12x^2}{(1 - x)(2 + 3x)^2}$.

(a)	Express $f(x)$ in partial fractions.	[5]

Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term in x								

10

The diagram shows the curve $y = (2 - x)e^{-\frac{1}{2}x}$, and its minimum point M.

(a)	Find the exact coordinates of M .	[5]

© UCLES 2020 9709/33/O/N/20

of e.							
		 					•••••
		 		•••••	•••••		
•••••	•••••	 					
		 •••••	••••••	•••••	•••••		•••••
	•••••	 •••••	••••••				
	•••••	 •••••					•••••
		 					•••••
		 			•••••		• • • • • • •
•••••	••••••	 •••••	••••••	••••••	•••••		• • • • • • •
•••••	•••••	 •••••	••••••				• • • • • •
	•••••	 •••••					
	•••••	 •••••		•••••	•••••	•••••	
	•••••	 					
•••••	•••••	 •••••	•••••	•••••	•••••		
		 					•••••

11 Two lines have equations $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(a\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ and $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} + \mathbf{k})$, where a is a

Given that the two lines intersect, find the value of a and the position vector of the pointersection.

two possie	ole values of a						
			••••••	•••••		•••••	•••••
•••••	•••••						
•••••			•••••••	•••••	••••••••	••••••	•
	,						
	•••••	,	••••••	•••••		•••••	••••••
			•••••	•••••			••••••
• • • • • • • • • • • • • • • • • • • •	,		••••••	•••••	••••••	•••••	•••••
	•••••						
• • • • • • • • • • • • • • • • • • • •	,		••••••	•••••	•••••••	•••••	•••••
			•••••			•••••	
• • • • • • • • • • • • • • • • • • • •		,	•••••••	••••••	•••••••••	••••••	•••••
	,						
• • • • • • • • • • • • • • • • • • • •		,	••••••	•••••		•••••	•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

February/March 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

© UCLES 2021 9709/32/F/M/21

				 ,	
			•••••	 	
•••••	••••••	••••••			•
	••••••	••••••	•••••	 ,	••••••
			•••••	 	
			•••••	 	
			•••••	 	
	••••••	••••••		 	••••••••••
•••••	••••••	••••••	•••••	 ·····	
			•••••	 	
			•••••	 	
			••••••	 	

2

5. 1.4 1 f 1. L	F #-
ind the values of a and b .	[5]

© UCLES 2021 9709/32/F/M/21

equation for $0^{\circ} < x < 180^{\circ}$.	

4 The variables x and y satisfy the differential equation

$$(1 - \cos x)\frac{\mathrm{d}y}{\mathrm{d}x} = y\sin x.$$

It is given that y = 4 when $x = \pi$.

Solve the differential equation, obtaining an expression for y in terms of x .

© UCLES 2021 9709/32/F/M/21

(b)	Sketch the graph of y against x for $0 < x < 2\pi$. [1]

varav	e of R and give α correct to 2 decimal places.	
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
• • • • • • •		•••••
•••••		• • • • • • • • • • • • • • • • • • • •
		•••••
•••••		
•••••		
•••••		
•••••		•••••
•••••		••••••
•••••		
•••••		
		•••••

••••••
••••••
••••••
••••••
••••••
••••••
•••••
 •••••

	$f(x) = \frac{5a}{(2x-a)(3a-x)}$, where a is a positive constant.	
a)	Express $f(x)$ in partial fractions.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

		at $\int_{a}^{2a} f(x) dx$						
•••••	•••••	•••••••••••	••••••••••	••••••	••••••	•••••	•••••	
•••••	•••••	•••••	••••••	••••••	••••••	••••••	•••••	•••••
•••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••	
•••••								
•••••					•••••	•••••		
•••••								
•••••			•••••		•••••	•••••		
•••••			•••••		•••••			
•••••								
•••••								
					•••••		•••••	
•••••								
					,			

)	Show that the lines are skew.	
		•••••
		•••••

••••••
•••••

The complex numbers u and v are defined by u = -4 + 2i and v = 3 + i.

8

1	Find $\frac{u}{v}$ in the form $x + iy$, where x and y are real.
	Hence express $\frac{u}{r}$ in the form $re^{i\theta}$, where r and θ are exact.
	Hence express $\frac{u}{v}$ in the form $re^{i\theta}$, where r and θ are exact.
	Hence express $\frac{u}{v}$ in the form $re^{i\theta}$, where r and θ are exact.
	Hence express $\frac{u}{v}$ in the form $re^{i\theta}$, where r and θ are exact.
	Hence express $\frac{u}{v}$ in the form $re^{i\theta}$, where r and θ are exact.
	Hence express $\frac{u}{v}$ in the form $re^{i\theta}$, where r and θ are exact.

© UCLES 2021 9709/32/F/M/21

In an Argand diagram, with origin O, the points A, B and C represent the complex numbers u, v and 2u + v respectively.

Prove that angle $AOB = \frac{3}{4}\pi$.	
	••••••

^	T (C()	$e^{2x} + 1$
9	Let $f(x) =$	$\frac{e^{-x}}{e^{2x}-1}$, for $x > 0$

Verif	y by calculat	ion that <i>a</i> he	s between 1 ar	nd 1.5.		
	•••••					•••••
•••••	•••••••••••	••••••••••••	••••••	•••••		••••••
•••••		•••••	•••••	•••••		
	•••••		•••••		•••••	•••••
•••••	•••••••••••	••••••••••	••••••	•••••		••••••
•••••						
				ion in part (a) t		correct to 2 de
						correct to 2 de
						correct to 2 de
						correct to 2 de
						correct to 2 de
						correct to 2 de
						correct to 2 de
						correct to 2 de
						correct to 2 de
						correct to 2 de
						correct to 2 de
						correct to 2 de

© UCLES 2021 9709/32/F/M/21

••••••
•••••
 •••••
•••••
 •••••
••••••
•••••
 •••••
•••••

10

The diagram shows the curve $y = \sin 2x \cos^2 x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

a)	Using the substitution $u = \sin x$, find the exact area of the region bounded by the curve and the x-axis.	
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••

© UCLES 2021 9709/32/F/M/21

Find the exact x -coordinate of M .	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

Your working should show clearly that the equation has only one real root.	
	••••••
	••••••
	••••••
	•••••
	••••••
	•••••

3	(a)	Given that $cos(x - 30^\circ) = 2 sin(x + 30^\circ)$, show that $tan x =$	$\frac{2-\sqrt{3}}{1-2\sqrt{3}}.$ [4]
	(b)	Hence solve the equation	
		$\cos(x-30^\circ)=2\sin(x+30^\circ),$	
		for $0^{\circ} < x < 360^{\circ}$.	[2]

4	(a)	Prove that $\frac{1-\cos 2\theta}{1+\cos 2\theta} \equiv \tan^2 \theta$.	[2]
	(b)	Hence find the exact value of $\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \frac{1 - \cos 2\theta}{1 + \cos 2\theta} d\theta.$	[4]
			•••••
			•••••

In an Argand diagram with origin O , the roots of this equation are represented by the distinct poir A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q .	a)	Solve the equation $z^2 - 2piz - q = 0$, where p and q are real constants.	[2
In an Argand diagram with origin O , the roots of this equation are represented by the distinct poir A and B .			
In an Argand diagram with origin O , the roots of this equation are represented by the distinct poir A and B .			
In an Argand diagram with origin O , the roots of this equation are represented by the distinct poir A and B .			
In an Argand diagram with origin O , the roots of this equation are represented by the distinct poin A and B .			
an Argand diagram with origin O , the roots of this equation are represented by the distinct poir and B .			
an Argand diagram with origin O , the roots of this equation are represented by the distinct poir and B .			
an Argand diagram with origin O , the roots of this equation are represented by the distinct poir and B .			
and B .			
and B .			
and B .			
and B .			
A and B .			••••••
	n o	n Argand diagram with arigin Q the roots of this aquation are represented by the	listingt point
	ar	and B .	listinct point
	l ar	and B .	
	ar	and B .	
	ar	and B .	
	ar	and B .	
	ar	and B .	
	ar	and B .	
	l ar	and B .	
	l ar	and B .	

•••••					•••••	
•••••					•••••	
•••••		••••••		•••••	•••••	•••••
••••••	•••••	•••••	•••••••••	•••••	•••••	•••••
		•••••				
••••••		••••••••		•••••	••••••	••••••
				••••••	••••••	••••••
•••••					•••••	
		•••••				
•••••	•••••			•••••	•••••	•••••
		,				
•••••		•••••	•	•••••	•••••	••••••
				••••••	••••••	••••••
					•••••	

6 The parametric equations of a curve a
--

$$x = \ln(2+3t),$$
 $y = \frac{t}{2+3t}.$

(a)	Show that the gradient of the curve is always positive.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

•	
• •	
• •	
• •	
_	
•	
• •	
•	
•	
• •	
•	
•	
_	
•	

7

The diagram shows the curve $y = \frac{\tan^{-1} x}{\sqrt{x}}$ and its maximum point M where x = a.

(a)	Show	that	а	satisfies	the	equation
(a)	SHOW	mai	и	sausiies	uic	Equation

$a = \tan\left(\frac{2a}{1+a^2}\right)$	[4]

••••••	•••••	•••••	•••••		••••••		••••••	•••••
			•••••	•••••	•••••	•••••	••••••	•••••
								•••••
••••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••
	•••••							
Use an it	erative for	mula basec	d on the eq	uation in pa	art (a) to de	etermine <i>a</i>	correct to	2 dec
places. (live the res	ult of each	iteration to	4 decimal	places.			
••••••								•••••

8	With	n respect to the origin O , the points A and B have position vectors given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and
	\overrightarrow{OB}	$= \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}. \text{ The line } l \text{ has equation } \mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$
	(a)	Find the acute angle between the directions of AB and l . [4]

•••••

	equation of a curve is $y = x^{-\frac{2}{3}} \ln x$ for $x > 0$. The curve has one stationary point.	[5]
(a)	Find the exact coordinates of the stationary point.	[5]
		•••••
		•••••
		•••••
		•••••

	$t \int_1^8 y \mathrm{d}x = 18 \ln x$					
						,
••••••		•••••	••••••		•••••	
		•••••				
		•••••				•••••
••••••		•••••	•••••			
		•••••	•••••		•••••	
		•••••	••••••			
		••••			•••••	•••••
		•••••			•••••	
•••••		•••••	••••••		•••••	
••••••	••••••	••••••		•••••••	•••••	

10	The variables x and t satisfy the differential equation $\frac{dx}{dt} = x^2(1+2x)$, and $x = 1$ when $t = 0$.
	Using partial fractions, solve the differential equation, obtaining an expression for t in terms of x . [11]

•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•

Additional Page

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

the inequality $ 2x-1 < 3 x+1 $.	[4

On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z+1-\mathrm{i}| \leqslant 1$ and $\arg(z-1) \leqslant \frac{3}{4}\pi$. [4]

	Explain why the graph of y against $\ln x$ is a straight line and state the exact value of the gr of the line.
It is	given that the line intersects the y-axis at the point where $y = 1.3$.
	given that the line intersects the y-axis at the point where $y = 1.3$. Calculate the value of A , giving your answer correct to 2 decimal places.
	Calculate the value of A , giving your answer correct to 2 decimal places.
	Calculate the value of A , giving your answer correct to 2 decimal places.
	Calculate the value of A , giving your answer correct to 2 decimal places.
	Calculate the value of A , giving your answer correct to 2 decimal places.
	Calculate the value of A , giving your answer correct to 2 decimal places.
	Calculate the value of A , giving your answer correct to 2 decimal places.
	Calculate the value of A , giving your answer correct to 2 decimal places.

				$\int_0^2 \tan^{-1}\left(\frac{1}{2}x\right)$		
••••••	••••••	••••••	••••••			
••••••	••••••	••••••	••••••	••••••		
••••••	••••••	•••••	••••••	••••••	•••••	
••••••	••••••	•••••	••••••	••••••	•••••	
••••••	••••••	•••••	••••••	••••••		
•••••	•••••	••••••	••••••	••••••••••••	•••••	
••••••	••••••	••••••	••••••	••••••		
••••••	••••••••••	••••••••••	•••••••	••••••••••••	••••••	

Find the two square roots xact.	of u , giving your	answers in the	e form $a + ib$,	where a and a	b are rea
					•••••
					•••••
					•••••
					•••••
			•••••		
					•••••
	••••••	•••••	••••••		
	••••••		••••••		•••••
	•••••	•••••	•••••		· ····
					•••••
					•••••

6	(a)	Prove that $\csc 2\theta - \cot 2\theta \equiv \tan \theta$.	[3]
	(b)	Hence show that $\int_{\frac{1}{4}\pi}^{\frac{1}{3}\pi} (\csc 2\theta - \cot 2\theta) d\theta = \frac{1}{2} \ln 2.$	[4]

-	A curve is such that the gradient at a general point with coordinates (x, y) is proportional to $\frac{y}{\sqrt{x+1}}$. The curve passes through the points with coordinates $(0, 1)$ and $(3, e)$.
	By setting up and solving a differential equation, find the equation of the curve, expressing y in term of x .
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

 •••
•••
 •••
 •••
•••
•••
•••
•••
 •••
•••
•••
•••
•••
 •••
•••
 •••

	Find the <i>x</i> -coordinates of the stationary points of the curve. Give your answers correct to 3 de places where appropriate.
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

0	Let $f(x) =$	$14 - 3x + 2x^2$				
,	Let $I(x)$ –	$(2+x)(3+x^2)$				

(a)	Express $f(x)$ in partial fractions.	[5]

	Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the									
••		•••••	•••••							
•										
••		•••••		•••••						
••		••••••	••••••	•••••••	••••••	••••••	••••••			
• •										
••		•••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
••										
••	•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••			
••							•••••			
••		•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •			
••		•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •			
••				•••••			• • • • • • • • • • • • • • • • • • • •			
• •							• • • • • • • • • • • • • • • • • • • •			
••					•••••		•••••			
••							• • • • • • • • • • • • • • • • • • • •			
. •										
••							• • • • • • • • • • • • • • • • • • • •			

The diagram shows a trapezium ABCD in which AD = BC = r and AB = 2r. The acute angles BAD and ABC are both equal to x radians. Circular arcs of radius r with centres A and B meet at M, the midpoint of AB.

(a)	Given that the sum of the areas of the shaded sectors is 90% of the area of the trapezium, show that x satisfies the equation $x = 0.9(2 - \cos x) \sin x$. [3]
(b)	Verify by calculation that x lies between 0.5 and 0.7. [2]

(c)	Show that if a sequence of values in the interval $0 < x < \frac{1}{2}\pi$ given by the iterative formula
	$x_{n+1} = \cos^{-1}\left(2 - \frac{x_n}{0.9\sin x_n}\right)$
	converges, then it converges to the root of the equation in part (a). [2
(d)	Use this iterative formula to determine <i>x</i> correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3

11	\overrightarrow{OB}	With respect to the origin O , the points A and B have position vectors given by $\overrightarrow{OA} = 2\mathbf{i} - \mathbf{j}$ and $\overrightarrow{B} = \mathbf{j} - 2\mathbf{k}$.										
	(a)	Show that $OA = OB$ and use a scalar product to calculate angle AOB in degrees. [4]										

Find the po	essible position v	vectors of P.				
			••••			
				••••••	•••••••	•••••
•••••••		•••••		•••••••	••••••••	••••••••
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	,	••••••	••••••	••••••
		•••••		•••••	••••••	•••••
• • • • • • • • • • • • • • • • • • • •		•••••		•••••	••••••	•••••
					•••••	•••••
•••••						•••••
			• • • • • • • • • • • • • • • • • • • •		•••••	
••••••	•••••	•••••		•••••	•••••••	•••••••
			•••••			
• • • • • • • • • • • • • • • • • • • •		•••••	,	•••••	••••••	••••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.	;)
	••
	••
	••
	••
	••
	••
	••
	••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/43

Paper 4 Mechanics May/June 2021

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use 10 m s⁻².

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages.

1

Particles P of mass $0.4 \, \mathrm{kg}$ and Q of mass $0.5 \, \mathrm{kg}$ are free to move on a smooth horizontal plane. P and

. .
•••••
•••••
•••••
•••••
•••••

` /	Find the total mass of the cyclist and her bicycle.
unc	cyclist comes to a straight hill inclined at an angle θ above the horizontal. She ascends the stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.
unc	stant speed 3 m s ⁻¹ . She continues to work at the same rate as before and the resistance for
unc	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.
unc	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.
unc	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.
unc	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.
unc	stant speed $3 \mathrm{ms^{-1}}$. She continues to work at the same rate as before and the resistance for hanged.

Four coplanar forces act at a point. The magnitudes of the forces are 20 N, 30 N, 40 N and F N. The directions of the forces are as shown in the diagram, where $\sin \alpha^{\circ} = 0.28$ and $\sin \beta^{\circ} = 0.6$.

Given that the forces are in equilibrium, find F and θ .	[6]
	••••••
	••••••
	••••••
	•••••

4

		article is projected vertically upwards with speed u m s ⁻¹ from a point on horizontal ground. After conds, the height of the particle above the ground is 24 m.
(8	a)	Show that $u = 22$. [2]
(I	b)	The height of the particle above the ground is more than h m for a period of 3.6 s.
		Find h . [4]

5	to th	ar of mass $1400 \mathrm{kg}$ is towing a trailer of mass $500 \mathrm{kg}$ down a straight hill inclined at an angle of 5° he horizontal. The car and trailer are connected by a light rigid tow-bar. At the top of the hill the ed of the car and trailer is $20 \mathrm{ms^{-1}}$ and at the bottom of the hill their speed is $30 \mathrm{ms^{-1}}$.									
	(a)	It is given that as the car and trailer descend the hill, the engine of the car does 150 000 J of work, and there are no resistance forces.									
		Find the length of the hill. [5]									

Find the tension in the tow-bar between the car and trailer.									
	and the tension in the tow our services the cur and trailer.								
•									
•									
٠									
•									
•									
•									
•									
•									
•									
•									
•									
•									

6	A particle moves in a straight line and passes through the point A at time $t = 0$. The velocity of the
	particle at time t s after leaving A is v m s ⁻¹ , where
	$v = 2t^2 - 5t + 3.$
	$v=2t^2-5t+3.$

(a)	Find the times at which the particle is instantaneously at rest. minimum velocity of the particle.	Hence or otherwise find the [4]

[3]

(b) Sketch the velocity-time graph for the first 3 seconds of motion.

• • • • • •	•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••
	•••••			•••••	•••••			•••••		•••••	•••••	•••
								•••••		•••••		• • •
										•••••		•••
					•••••							• • •
	•••••			•••••								•••
												•••
	•••••			•••••								•••
												•••
	•••••			•••••								•••
												•••
												•••
	•••••			•••••								•••
												•••
												. • •
										•••••	•••••	•••
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	••••••	•••••	•••••	•••••	•••••	•••••	• • •

A particle P of mass 0.3 kg rests on a rough plane inclined at an angle θ to the horizontal, where $\sin \theta = \frac{7}{25}$. A horizontal force of magnitude 4 N, acting in the vertical plane containing a line of greatest slope of the plane, is applied to P (see diagram). The particle is on the point of sliding up the plane.

(a)	Show that the coefficient of friction between the particle and the plane is $\frac{3}{4}$.	[4]
	force acting horizontally is replaced by a force of magnitude 4 N acting up the plane of greatest slope.	e parallel to a
(b)	Find the acceleration of P .	[3]

	••••••			•••••	•••••
••••••	•••••	•••••	•••••	•••••	•••••
••••••	••••••				•••••
					•••••
		••••			
Starting with A	P at rest, the force	e of 4 N parallel to	o the plane acts for	3 seconds and is	then rem
Find the total	distance travelle	ed until <i>P</i> comes i	to instantaneous re	est	
Time the total		, a unui i comes		, sec.	
		••••			
•••••	•••••				••••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages.

•	
•	
•	
•	•••••
•	
•	
•	
•	
•	 •••••
•	
•	,
•	 •••••
•	
•	
•	
•	•••••
•	
•	
•	
•	 •••••
•	
•	

	Express $5 \sin x - 3 \cos x$ in the form $R \sin(x - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2}\pi$. Give the exact value of R and give α correct to 2 decimal places.
•	
•	
•	
•	
•	
•	
	2
l	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. [2]
•	

()	Find the coordinates of this point.	
(b)	Determine whether the stationary point is a maximum or a minimum.	

$\int_{3}^{\infty} \frac{1}{(x+1)\sqrt{x}} \mathrm{d}x. \tag{6}$	

	5 ((a)	Show	that	the	equation
--	-----	-----	------	------	-----	----------

(b)

$\cot 2\theta + \cot \theta = 2$	
can be expressed as a quadratic equation in $\tan \theta$.	[3]
Hence solve the equation $\cot 2\theta + \cot \theta = 2$, for $0 < \theta < \pi$, giving your answers correct to 3 places.	3 decimal [3]

Find the values of a and b) .			[6
	••••••	•••••	••••••	••••••
	••••••	••••••	••••••	••••••
		••••••		

	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x \ln x}.$
The	variables x and t satisfy the differential equation
	$x \ln x + t \frac{\mathrm{d}x}{\mathrm{d}t} = 0.$
It is	given that $x = e$ when $t = 2$.
(b)	Solve the differential equation obtaining an expression for x in terms of t , simplifying you answer.

Honor state what honors to the value of v as t tends to int	inity [1]
Hence state what happens to the value of x as t tends to inf	inity. [1]

(c)

The	e constant a is such that $\int_{1}^{a} \frac{\ln x}{\sqrt{x}} dx = 6.$	
(a)	Show that $a = \exp\left(\frac{1}{\sqrt{a}} + 2\right)$.	[5]
	$[\exp(x)$ is an alternative notation for e^x .]	
		· • • • •
		· • • • •
		· • • • •
		,
		· • • • •
		· • • • •

(b)	Verify by calculation that a lies between 9 and 11.	[2
		•••
		•••
		•••
		•••
		•••
		•••
(c)	Use an iterative formula based on the equation in part (a) to determine a correct to 2 decir places. Give the result of each iteration to 4 decimal places.	ma [3
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••

a)	Show that l and m are perpendicular. [2]
b)	Show that l and m intersect and state the position vector of the point of intersection. [5]

		•••••
		•••••
		•••••
(c)	Show that the length of the perpendicular from the origin to the line m is $\frac{1}{3}\sqrt{5}$.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(a)	Find the values of a and b .	
		•••••
		•••••
		•••••
		••••••
(b)	State a second complex root of this equation.	

(c)	Find the real factors of $p(x)$.	[2]
(d)	(i) On a sketch of an Argand diagram, sha numbers z satisfying the inequalities $ z - u $	de the region whose points represent complex $u \leq \sqrt{5}$ and $\arg z \leq \frac{1}{4}\pi$. [4]
	(ii) Find the least value of Im z for points in t form.	he shaded region. Give your answer in an exact [1]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

integers.	alue of x for which	100 3(2) = 7	. Give your	answei in un	ln	\overline{b} , where u	anu <i>v</i>
							••••••
•••••						•••••	•••••
							•••••
					••••••		•••••
							•••••
					••••••	•••••	•••••
					••••••		•••••
•••••			•••••	•••••	••••••	••••••	••••••
•••••				••••••	••••••	••••••	•••••
			•••••	•••••	•••••••	•••••	••••••
						•••••	

••	•••••
••	•••••
••	•••••
••	••••••
••	•••••
••	
••	 •••••
••	•••••
••	•••••
••	•••••
••	•••••

(4)	Given the complex numbers $u = a + ib$ and $w = c + id$, where a , b , c and d are real, prove $(u + w)^* = u^* + w^*$.
(b)	Solve the equation $(z + 2 + i)^* + (2 + i)z = 0$, giving your answer in the form $x + iy$ where x y are real.

•••••			• • • • • • • • • • • • • • • • • • • •	•••••		
			•	•••••		••••••
•••••			•••••	•••••	•••••	•••••
•••••						
•••••	,	•••••	•••••	••••••	•••••	••••••
•••••						
••••••		•	••••••	••••••	•••••	••••••
•••••			•••••	•••••		•••••
•••••	,	•••••	•••••	••••••	•••••	••••••
•••••						
•••••		•	••••••	••••••	•••••	••••••
•••••		•••••	•••••	•••••	•••••	•••••
••••••	,	•••••	•••••	•••••	•••••	•••••

5	(a)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $ z-3-2i \le 1$ and $\text{Im } z \ge 2$. [4]
	(h)	Find the greatest value of arg z for points in the shaded region, giving your answer in degrees
	(b)	Find the greatest value of $\arg z$ for points in the shaded region, giving your answer in degrees. [3]
	(b)	
	(b)	
	(b)	[3]
	(b)	[3]
	(b)	[3]
	(b)	

6	(a)	Using the expansions of $sin(3x + 2x)$ and $sin(3x - 2x)$, show that							
		$\frac{1}{2}(\sin 5x + \sin x) \equiv \sin 3x \cos 2x.$	[3]						
			, 						
			· • • • • • • • • • • • • • • • • • • •						
			· • • • • • • • • • • • • • • • • • • •						
			· • • • • • • • • • • • • • • • • • • •						
			,						

	Hence show that $\int_0^{\frac{1}{4}\pi} \sin 3x \cos 2x dx = \frac{1}{5}(3 - \sqrt{2}).$	
•		•••••
•		
•		•••••
•		
•		••••••
•		
•		
•		
•		
•		•••••
•		•••••
•		
_		
•		
•		•••••
•		•••••
•		
•		•••••

7	The	variables 3	x and	y satisfy	the	differential	equation

$$e^{2x}\frac{\mathrm{d}y}{\mathrm{d}x} = 4xy^2,$$

and it is given that y = 1 when x = 0. Solve the differential equation, obtaining an expression for y in terms of x. [7]

8	(a)	By first expanding $(\cos^2 \theta + \sin^2 \theta)^2$, show that	
		$\cos^4\theta + \sin^4\theta \equiv 1 - \frac{1}{2}\sin^2 2\theta.$	[3]
			· • • •
			· • • •
			· • • •
			••••
			· • • •
			· • • •
			· • • •
			••••
			· • • •
			· • • •
			· • • •
			· • • •
			· • • •
			· • • •
			· • • •
			· • • •
			••••
			••••
			· • • •
			· • • •
			•••
			••••
			· • • •

	13							
(b)	Hence solve the equation $\cos^4 \theta + \sin^4 \theta = \frac{5}{9},$							
	$\cos \theta + \sin \theta - \frac{1}{9}$, for $0^{\circ} < \theta < 180^{\circ}$.							

a)	Show that $\frac{dy}{dx} = \frac{2ye^x - y^2}{2y - e^x}$.	
		•••••
		•••••

Find the exact coordinates of the point on the curve where the tangent is parallel to the <i>y</i> -axi

10	With \overrightarrow{OB}	th respect to the origin O , the position vectors of the points A and B are given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $A = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$.
	(a)	Find a vector equation for the line l through A and B . [3]
	(b)	The point C lies on l and is such that $\overrightarrow{AC} = 3\overrightarrow{AB}$.
		Find the position vector of C . [2]

Find the possible position vectors of the point P on l such that $OP = \sqrt{14}$.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••••

11 The equation of a curve is $y = \sqrt{\tan x}$, for $0 \le x < \frac{1}{2}\pi$.

(a)	Express $\frac{dy}{dx}$ in terms of $\tan x$, and verify that $\frac{dy}{dx} = 1$ when $x = \frac{1}{4}\pi$.	[4]
		•••••
		•••••
		•••••
		••••

The value of $\frac{dy}{dx}$ is also 1 at another point on the curve where x = a, as shown in the diagram.

(b) Show that $t^3 + t^2 + 3t - 1 = 0$, where $t = \tan a$. [4]

(c)	Use the iterative formula
(C)	Ose the herative formula
	$a_{n+1} = \tan^{-1} \left(\frac{1}{3} (1 - \tan^2 a_n - \tan^3 a_n) \right)$
	$n+1$ $(3(1 \text{ can } a_n \text{ can } a_n))$
	to determine a correct to 2 decimal places, giving the result of each iteration to 4 decimal places.
	[3]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the questions the clearly shown.	stion number(s)
	••••••
	••••••
	••••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

 •••••
••••••••
••••••
 •••••
••••••
•••••
••••••
 •••••

[1]

2. ((a)	Sketch	the	oranh	of $v =$	12r –	31
_	(4)	DIXCLCII	uic	SIUDII	O_1 V $-$	120	~ I.

(b)	Solve the inequality $ 2x - 3 < 3x + 2$.	[3]

						•••••		•••••		•••••
								•••••		•••••
							•••••			
					•••••			••••••	•	•••••
										•••••
•••••	••••••	•••••	•	•	•••••	•••••	••••••	••••••	••••••	•••••
•••••	••••••	•••••	•	••••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	•••••	••••••	••••••	•••••
•••••	•••••	•••••			•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••				••••••		•••••	•••••	•••••	•••••
					••••••	•••••	•••••	•••••		•••••

Find the exact value of $\int_{\frac{1}{3}\pi}^{\pi} x \sin \frac{1}{2} x dx$.	

•	
•	
•	,
•	
٠	
•	
•	••••••
•	

(a) By first expanding $\cos(x - 60^\circ)$, show that the expression

6

	$2\cos(x-60^\circ)+\cos x$
	can be written in the form $R\cos(x - \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimal places. [5]
(b)	Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ takes its least possible value. [2]

7 The equation of a curve is ln(x + y) = x - 2y.

	ow that $\frac{dy}{dx} = \frac{x+y-1}{2(x+y)+1}.$	
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		

•••	
•••	
•••	
•••	
••••	
•••	
••••	
••••	
••••	
•••	
••••	
•••	
••••	
••••	
••••	
••••	
••••	
•••	
••••	

In the diagram, OABCD is a pyramid with vertex D. The horizontal base OABC is a square of side 4 units. The edge OD is vertical and OD = 4 units. The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively.

The midpoint of AB is M and the point N on CD is such that DN = 3NC.

(a)	Find a vector equation for the line through M and N .	[5]

 •

9	Let $f(x) =$	$\frac{1}{(9-x)\sqrt{x}}.$

Find the <i>x</i> -coordinate of the stationary point of the curve with equation	

Using the substitution $u = \sqrt{x}$, show that $\int_0^4 f(x) dx = \frac{1}{3} \ln 5$.	

10	A large plantation of area $20 \mathrm{km^2}$ is becoming infected with a plant disease. At time t years the area
	infected is $x \text{km}^2$ and the rate of increase of x is proportional to the ratio of the area infected to the
	area not yet infected.

When t = 0, x = 1 and $\frac{dx}{dt} = 1$.

1	- \	C1	41 4	1 .		. 41	1:00	
(ä	1)	SHOW	uiat x	anu i	sausty	me	differential	equation

		$\frac{\mathrm{d}x}{\mathrm{d}t} =$	19.	$\frac{x}{-x}$.				[2]
			•••••			•••••	•••••	
						•••••		
			•••••					
			•••••					
		••••••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••	
			•••••					
(b)	Solve the differential equation and $x = e^{0.9+0.05x}$.	l show	that	when $t =$	1 the va	alue of x	satisfies	the equation [5]
		•••••	•••••	••••••		•••••	•••••	•••••
		••••••	•••••				••••••	
		••••••	•••••			•••••		
		••••••	•••••			•••••	•••••	
		••••••	•••••	••••••		•••••	•••••	•••••
			•••••	••••••		•••••	•••••	••••••
			•••••			•••••	••••••	•••••
			•••••			•••••	••••••	•••••
			•••••			•••••	••••••	•••••

		•••••
		•••••
(c)	Use an iterative formula based on the equation in part (b), with an initial value of 2, to de <i>x</i> correct to 2 decimal places. Give the result of each iteration to 4 decimal places.	etermine [3]
		•••••
		•••••
		•••••
(d)	Calculate the value of t at which the entire plantation becomes infected.	[1]
		•••••

a)	Express u in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$, giving the exact values of r and θ .
	Hence show that u^6 is real and state its value.
	Honor show that x^6 is real and state its value
)	Hence show that u^6 is real and state its value.
)	Hence show that u^6 is real and state its value.
)	Hence show that u^6 is real and state its value.
)	Hence show that u^6 is real and state its value.
)	Hence show that u^6 is real and state its value.
	Hence show that u^6 is real and state its value.
))	Hence show that u^6 is real and state its value.
)	Hence show that u^6 is real and state its value.
)	Hence show that u^6 is real and state its value.
•)	

(c)	(i)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $0 \le \arg(z - u) \le \frac{1}{4}\pi$ and $\operatorname{Re} z \le 2$. [4]
		~
	(ii)	Find the greatest value of $ z $ for points in the shaded region. Give your answer correct to 3 significant figures. [2]
	(ii)	3 significant figures. [2]
	(ii)	
	(ii)	3 significant figures. [2]
	(ii)	3 significant figures. [2]
	(ii)	3 significant figures. [2]
	(ii)	3 significant figures. [2]
	(ii)	3 significant figures. [2]
	(ii)	3 significant figures. [2]
	(ii)	3 significant figures. [2]

Additional Page